radRounds Radiology Network

Connecting Radiology | Enabling collaboration and professional development

Motion artifacts in subsecond conventional CT and electron-beam CT: pictorial demonstration of temporal resolution.

McCollough CH, Bruesewitz MR, Daly TR, Zink FE.
Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. mccollough.cynthia@mayo.edu

Radiographics. 2000 Nov-Dec;20(6):1675-81

To visually demonstrate the effective temporal resolution of subsecond conventional (slip-ring) and electron-beam computed tomographic (CT) systems, two phantoms containing high-contrast test objects were scanned with a slip-ring CT system (effective exposure time, 0.5 second) and an electron-beam CT system (exposure time, 0.1 second). Images were acquired of each phantom at rest, during translation along the x axis at speeds of 10-100 mm/sec, and during rotation about isocenter at speeds of 0.1 and 0.5 revolution per second. Motion artifacts and loss of spatial resolution were judged to be absent, noticeable, or severe. For 0.5-second conventional CT images, motion artifacts and loss of spatial resolution were noticeable at 10 mm/sec and 0.1 revolution per second and were severe at speeds greater than or equal to 20 mm/sec and at 0.5 revolution per second. For 0.1-second electron-beam CT scans, noticeable, but not severe, motion artifacts and loss of spatial resolution occurred at speeds between 40 and 100 mm/sec and at 0.5 revolution per second. Over the range of physiologic speeds examined, the images provide visually compelling evidence of the effect of improving temporal resolution in CT.

Posted via PubMed for educational and discussion purposes only.
Link to PubMed Reference

Views: 0

Sponsor Ad

© 2024   Created by radRounds Radiology Network.   Powered by

Badges  |  Report an Issue  |  Terms of Service