radRounds Radiology Network

Connecting Radiology | Enabling collaboration and professional development

Voss SD, Kruskal JB.
Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

Radiographics. 1998 Nov-Dec;18(6):1343-72

Gene therapy is one of the most rapidly evolving areas in medicine. Radiologists should have an understanding of basic techniques used to identify and clone a gene and insert it into a vector capable of directing expression in mammalian tissues. DNA delivery systems include retroviral vectors (RNA viruses), adenoviral vectors (DNA viruses), and cationic liposomes, along with strategies that involve ultrasound-directed gene transfer, computed tomography-guided gene transfer, and transcatheter gene delivery, in particular via the hepatic artery. Genes being evaluated in preclinical and clinical trials include oncogenes, antioncogenes (tumor suppressor genes), suicide genes, conventional antimetabolites, antiangiogenesis factors, secreted immunostimulatory cytokines such as interleukins and interferons, and immunomodulatory cell surface proteins, including foreign HLA proteins and costimulatory molecules. A foundation in molecular biology is needed for the practicing radiologist interested in but unfamiliar with current gene therapy terminology and experimental strategies. Such a foundation will encourage the dissemination of basic biologic, diagnostic imaging, and interventional oncoradiologic developments and should facilitate integration of the radiologist into the gene therapy team.

Posted via PubMed for educational and discussion purposes only.
Link to PubMed Reference

Views: 1

Sponsor Ad

© 2024   Created by radRounds Radiology Network.   Powered by

Badges  |  Report an Issue  |  Terms of Service